

Maxim > Design Support > Technical Documents > Application Notes > Analog Switches and Multiplexers > APP 5314

Keywords: VGA, Video Graphics Array, VGA Switch, notebook, graphics controller

**APPLICATION NOTE 5314** 

# Power Sequencing the MAX14885E VGA Crossover Switch

By: Micheal Scherrenburg Jan 24, 2012

Abstract: The MAX14885E, a fully integrated low-capacitance VGA dual-graphics crossover switch, connects a VGA source to a VGA monitor. This application note explains the proper sequencing of the MAX14885E's two power supplies,  $V_{CC}$  and  $V_L$ , on power-up.

### Introduction

The MAX14885E, a 2:2 VGA switch, connects a VGA source to a VGA monitor. To ease direct connection to graphics controllers or the ASIC, the MAX14885E has two supplies:  $V_{CC}$ , a 5V ±5% supply, drives the VGA side interface; and the V<sub>L</sub> supply sets the logic switching thresholds on the digital input pins (EN, S00, S01, S10, S11, SHA, SHB, SVA, and SVB). This application note documents the proper sequencing of the V<sub>CC</sub> and V<sub>L</sub> power supplies on power-up.

## **Proper Power Sequencing**

To ensure that the MAX14885E operates correctly, the V<sub>CC</sub> and V<sub>L</sub> supplies must be properly sequenced. It is easiest to understand the correct sequencing conditions if we split the discussion into two cases: first, when V<sub>L</sub> rises before (or coincidently) with V<sub>CC</sub>; and second, the case when V<sub>L</sub> rises after V<sub>CC</sub>.

#### Case 1: When V<sub>L</sub> Rises Before V<sub>CC</sub>

The MAX14885E powers up properly when  $V_L$  rises before  $V_{CC}$  rises or when it rises coincidently with  $V_{CC}$ . This is shown in **Figures 1** and **2**.



Figure 1.  $V_L$  rises in advance of the  $V_{CC}$  rising, resulting in a good power-up.



Figure 2.  $V_L$  rises coincidently with the  $V_{CC}$  rising, resulting in a good power-up.

### Case 2: When V<sub>L</sub> Rises After V<sub>CC</sub>

In the situation where  $V_L$  starts rising after  $V_{CC}$  begins to rise at power-up, some care must be taken **(Figure 3)**. For proper power-up, users must ensure that  $V_{CC}$  has settled before  $V_L$  starts rising.



Figure 3.  $V_L$  rises too soon after  $V_{CC}$ , resulting in a bad power-up.

 $V_L$  needs to start rising after  $V_{CC}$  has settled (outside of the red triangle illustrated in Figure 4).



Figure 4.  $V_L$  rises after  $V_{CC}$  has settled, resulting in a good power-up.

To provide a safety margin against variations in production and sequencing external power-supply circuits, it is recommended that the delay from  $V_{CC}$  rising to  $V_L$  rising be at least twice the rise time of the  $V_{CC}$  supply.



Figure 5. Definition and requirements for safe timing with margin.

#### **Detailed Analysis of Power Sequencing**

Often, power supply rails rise as shown in the previous figures. In some cases, however, the point where a power-supply transition ends is not so clear. This section describes a quantitative means to analyze a given specific scenario where  $V_L$  rises after  $V_{CC}$ . This method ensures that there is sufficient delay for correct power-up sequencing.

To determine this, four time measurements must be taken. Two of these measurements are with respect to specific voltage levels on  $V_{CC}$ , and the other two are with respect to specific voltage levels on  $V_L$ . All four measurements are to be taken from a single scope capture.

The following time measurements need to be taken:

- 1.  $T_{VCC90}$  = the time at which the V<sub>CC</sub> rising waveform has reached 90% of its final value, which should be 90% of 5V.
- 2.  $T_{VCC10}$  = the time at which the V<sub>CC</sub> rising waveform has reached 10% of its final value, which

should be 10% of 5V.

- 3.  $T_{VL90}$  = the time at which the V<sub>L</sub> rising waveform has reached 90% of its final value, which will be 90% of 3.3V or 90% of 2.5V.
- 4.  $T_{VL10}$  = the time at which the V<sub>L</sub> rising waveform has reached 10% of its final value, which will be 10% of 3.3V or 10% of 2.5V.



Figure 6. The time measurements needed to analyze a scenario where V<sub>L</sub> rises after V<sub>CC</sub>.

Now, perform the following calculations:

$$T1 = 2.5(T_{VCC90} - T_{VCC10})$$
$$T2 = \frac{T_{VCC90} - T_{VCC10}}{8}$$
$$T3 = \frac{T_{VL90} - T_{VL10}}{8}$$

To ensure sufficient margin between  $V_{CC}$  and  $V_L$  rising at power-up, the external power supply design must guarantee that:

T<sub>VL10</sub> ≥ T<sub>VCC10</sub> + T1 - T2 + T3

## Conclusion

This application note has described the correct power-up conditions for the MAX14885E VGA dualgraphics crossover switch. It has recommended how much margin to use in the sequencing delay if  $V_L$  succeeds  $V_{CC}$  when powering up. It has also provided a set of calculations to use when the trailing edge of the power supply ramp is not clearly defined.

| Related Parts |                                                           |              |
|---------------|-----------------------------------------------------------|--------------|
| MAX14885E     | Low-Capacitance VGA 2:2 Dual-Graphics Crossover<br>Switch | Free Samples |
|               |                                                           |              |

#### More Information

For Technical Support: http://www.maximintegrated.com/support For Samples: http://www.maximintegrated.com/samples Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 5314: http://www.maximintegrated.com/an5314 APPLICATION NOTE 5314, AN5314, AN 5314, APP5314, Appnote5314, Appnote 5314 Copyright © by Maxim Integrated Products Additional Legal Notices: http://www.maximintegrated.com/legal